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Abstract —A quasi-static anafysis is carried out to examine the capaci-

tive coupling between two nonintersecting orthogonal microstrip lines

above a ground plane and in a dielectric substrate. The charge density

along the width of each strip is deseribed using a preaeribed charge

distribution. A pair of coupled integral equations is derived and solved via

the method of moments to obtain the excess charge deosities. The lumped

excess capacitances are computed and compared to the ones obtained

using wire lines with radii equal to the eqnivafent radii of the strips.

I. INTRODUCTION AND STATEMENT OF THE

PROBLEM

M ICROSTRIP structures in multilayered dielectric

media have been analyzed extensively using a

quasi-static approach provided that the strips are narrow

compared to the wavelength. While for a homogeneous

structure the dominant mode is TEM, when the structure

is inhomogeneous the dominant mode becomes hybrid.

However, at low frequencies the longitudinal field compo-

nents are much smaller than the transverse components,

justifying the quasi-static approximation.

In this paper we are seeking the equivalent circuit of two

nonintersecting orthogonal narrow conducting strips of

widths 2 al and 2 a7 and of infinite length above and

parallel to ‘a perfectl~ conducting plane. The top strip lies

on the boundary between two different dielectric media.

This boundary is a plane which is parallel to the perfectly

conducting plane. Figs. 1 and 2 show the geometry of the

structure and the equivalent lumped element circuit. This

inhomogeneous stficture, which we will refer to as a

microst~ip crossover, is widely used in microwave and

millimeter-wave integrated circuits and microelectronic

packaging.

As in [1] and [2], the present paper uses a Green’s

function for two layers of dielectric above a ground plane

and a quasi-TEM analysis. In [3] the homogeneous

crossover between two ground planes is analyzed using an
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Fig. 1. Geometry of the microstnp structure.
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Fig. 2. Equivalent circuit of the microstrip crossover consisting of
lumped excess capacitances.

iterative algorithm, while in [4] the crossover is enclosed

between ground planes and conducting walls, and a trans-

verse resonance analysis is carried out. In [5] a full-wave

analysis is carried out for a semi-infinite crossover. The

Green’s function which is used in our problem is given in

the form of a rapidly convergent infinite-series and can be

obtained as a three-dimensional (3-D) extension of the

results given in [6]–[8]. To relate the excess charges to the

stripline potentials a pair of coupled integral equations is

obtained, which are solved via the method of moments

with point matching [9]. The number of unknowns is

reduced significantly by introducing a transverse charge

distribution that satisfies the edge condition [10]. This

distribution introduces integrals that can be evaluated

efficiently using a numerical algorithm called Gauss–

Chebyshev quadrature.
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II. ANALYSIS

The position-dependent charges per unit area on

striplines 1 and 2 are defined as in [11] by

QI(x, Y)= QIo(x)+~l(x, Y) (1)

for line 1 and

Q2(xY)= Q20(Y)+q2(x,Y) (2)

for line 2. If @l is the potential on line 1 then Qlo is the

charge per unit area required to maintain @l in the absence

of the other line. Charge density Qzo is defined in a similar

manner for line 2. Because the densities ql and qz exist in

excess of Qlo and Q20, they are called excess charge

densities. The potential at a point R in the ~i medium

above the ground plane is due to the total charge densities

on lines 1 and 2 and is given by

+(~) = i J.Jf2,(R9Gz, (RIR9ds’
,=1 s,

or, in a symbolic notation,

c)(R) =@(Q1, G,1)+@(Q2, G,2), i=l,2. (3)

Here, S’j is the surface of strip j, Q, is the charge density

on it, and G,, ( R IR’) with (i, j =1,2) is the electrostatic

3-D Green’s function given in Appendix I.

From the definition of Qlo and Q20 we have that

@,=+(Q,o>G,,), i=l,2. (4)

Note that when R, R’ E Sz then G22 = G21. Introducing (l),

(2), and (4) into (3) and specializing the resulting equations

to striplines 1 and 2, we obtain the pair of coupled integral

equations

$(%~G11)+@(~2, G12) = –4(Qm, G12) (5)

and

@(ql>Gzl)+$(qz,G2J = –C$(Q10,G21). (6)

We next let

Q,o = w&, i=l,2 (7)

which when used in (4), (5), and (6) gives

l=+(dlo>%) (8)

l=4@20>G21) (9)

+(411 >G11)++(421>G12)=0 (lOa)

@(@11, G21)+@(@21t G21) = –I#(&o>G21) (lob)

and

+(412,G11)++(422,G12)= –@(d20,G12)(ha)

@(412 >G21)+ @(4229%) =0. (llb)

The new quantities ~,, are related to ql and q2 via

~1 = %411 + +2412 (12)

92= +1421 + +2422. ‘“ (13)

The net excess charges Q: and Q; of lines 1 and 2 are

obtained by integrating ql and q2 over the corresponding

line. These net charges are then related to the line poten-

tials through the coefficients of capacitance and induction

C,i and Cl~ respectively [12]. Then we have

Q:= %l@l + %2+2 (14)

Q:= c21% + c22c#2 . (15)

Next the lumped excess capacitances are given by

c1 = Cll + C12 (16)

C2 = C21+ C22 (17)

cm=–c12. (18)

Cl and C2 are the excess capacitances of lines 1 and 2

respectively and Cm is their mutual capacitance. The coef-

ficients of capacitance and induction are related to the

excess densities through

and

(19)

j=l,2. (20)

III. MOMENT SOLUTION

Our objective now is to solve (8) and (9) for ~lo and ~20

respectively and then to use these quantities in (lOa), (lOb)

and (ha), (llb). To this end we let the unperturbed

stripline density ~lO(x ) be approximated by

~,o(x) == ‘1
J?-

(21)

where Al is an unknown constant. To represent Q20( y ) we

replace Al, al, and x with A z, a2, and y respectively in

(21) above. Introducing (21) and (Al) into (8) and per-

forming the integration with respect to y, the integral with

respect to x is evaluated numerically, as shown in [13],

using the Gauss–Chebyshev quadrature [14]. Special care

should be exercised due to singularities of the logarithmic

kernel. We then compute Al and, in a similar manner, A2.

We next approximate the excess densities as

4“=& 21’’”P”(Y)(22)

for line 1 and

42’=+7 :142’’”P”(X)’j=l’2 ’23)

for line 2. Here, P.(x) is the pulse function defined by

(I’n(x) = ;’ –L+(n–l)A<x<– L+nA
(24)

7 otherwise

where L is an appropriately chosen length and

A=: (25)

Next we introduce (21), (22), and (23) into (lOa), (lOb) and

(ha), (llb) and satisfy the resulting equations at the
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Fig. 3. Normalized excess charge densities when al - a2 = 0.02!-tl, h2 /hl = 1.5, c1 = c, = CO. (1) ijll /C( versus y/hi; (2)
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Fig. 4. Normalized excess charge densities when al = a2 = 0.02hl, h2,/hl = 1.5, Cl = 2C0, and C2= CO. (1) @lI/C{ versus
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Fig. 5. Normalized excess charge densities when al = 0.02hl, a~ = 0.04hl, [I = 3c0, and % = % (1) %1 /cI’ versus ~/hI; (2)
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midpoint of the domain of each function along the axis of

each strip. The matrix equations obtained are of the form

[K

and

[K]

[2]=[-2 (26,

][ 1

712 = – A23
(27)

<22 o“

The form of the system matrix K and the source vectors ~

and ~ are shown in Appendix II. From (22), (23), (19), and

(20) we also obtain

??=1

and
N

.
c2j=

WA z q2J, n>
j=l,2

(28)

(29)

IV. NUMERICAL ICESULTS

Figs. 3–5 show the plots of the excess charge densities

versus the normalized distance from the center of symme-

try. The quantities that we have plotted are ~li(~)/C~>

where

for strip 1 and 42,(x)/C,’, where

~2j(X)‘j”’ ~zi(x>~)d~
—a2

for strip 2, with i =1, 2. C{ and C; are the capacitances

per unit length of the isolated wire lines with radii equal to

the equivalent radii of striplines 1 and 2 respectively. C{

and C; are calculated with c1= [2 = co, where co is the

permittivity of free space. As is shown in [15], the equiva-

lent radius of a narrow strip is equal to one fourth its

width. It has been found that the excess charge density is

concentrated within a length of about 20h z or 30h ~, out-

side of which it is negligible. However, when computing we

assumed a length 10hl for each strip. Otherwise stated,

L = 5hl in (24) and (25). The height ratio h ~/hl was taken

equal to 1.5 and the length of each subsection 5 x 10- *hl.

In Fig. 3 the permittivities [1 and ~, were chosen to be

equal to CO, and the widths of both strips 4 x 10 – 2hl or

al = az = 0.02 hl. These plots then were compared to the

ones shown in [11], [16], and [17], where the same parame-

ters were used, and the agreement was excellent. In partic-

ular the plots of Fig. 3 are identical to the ones of [17], as

expected. When the dielectric interface ceases to exist the

infinite series that represents the 3-D Green’s function

reduces to that of free space, which is the case treated in

[17]. In [16] the wire and strip crossovers are examined in

free space. The width of each strip was divided into N’

subsections. To compare the wire and the strip crossover

we assumed a wire with radius equal to the strip’s equiva-

lent radius. Table I shows the values of the normalized

TABLE I
COMPARISON OF RESULTS FOR FIG. 3

Results obtained Results obtained Results Present
using [16] (wire using [16 ] for a obtained solution
Crossc”er) strip crossover using [17]

with N’ pulses

along its tmdrh

X1=12 N,=lj

~
1.013

h ~C;
1.002 0.991 1.014 l.olb

c1

hlC;
-0.853 -0.84L -0.836 -0.853 -0.853

c,

-t -0.792 –0. 785 -0.777 -0.792 -0.792

‘lc’

TABLE II

RESULTS FOR FIGS. 4 AND 5

al
= !+ = 0.02 hl al =0.02 hl, 52 = 0.04 hl

‘1
= 2E0, E2 = co ,sl = 3C0, C2 = <0

cm

1.672 2.337
hlci

c1

hlC;
-1.345 -1.763

hC2
-1.296 -2.056

‘Iq

lumped excess capacitances using [16]. As expected by

increasing the number of subsections N’, the agreement

between the two solutions becomes excellent, as is the

agreement with the solution presented in [11]. However,

increasing N’ results in an excessive computation time. To

reduce the computation time we then introduced the trans-

verse charge distributions (21)–(23). These distributions

satisfy the edge conditions [10]. The results obtained and

shown in [17] were again in excellent agreement with the

previous ones, as is shown in Table I. Due to a substantial

decrease in the number of unknowns, the computation

time was greatly reduced.

In Fig. 4 we have chosen c1= 2C0 and Cz= CO. The

infinite series that represents the 3-D Green’s function is

fast converging, and ten terms (M= 10) gave excellent

accuracy. As a final example Fig. 5 shows the normalized

densities when al= 0.02hl, a2 = 0.04hl, c1= 3eo, and ~z =

eo. The normalized excess capacitances that correspond to
Figs. 4 and 5 are shown in Table II.

V. CONCLUSION

The capacitive coupling between two nonintersecting

orthogonal microstrip lines inside a dielectric medium

(PO, cl) interfacing an infinite dielectric layer (po, 62) was

examined. The analysis was carried out using the electro-

static 3-D Green’s function and the method of moments.

An edge condition was assumed to describe the excess

charge distribution along the widths. This approach simpli-

fies the analysis and drastically reduces the computation

time. The results obtained for the limiting case c1 = c z

were compared with results obtained using a solution
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where the width distribution was treated as unknown and

determined by the moment solution. The agreement be-

tween the two approaches was excellent.

APPENDIX I

The electrostatic three-dimensional Green’s function for

a two-layer dielectric above a perfectly conducting plane

consists of four expressions depending on the location of

the field and source points. Thus, as is shown in [13],

~Gll(RIRI), z<hz, z’<hz

G(RIR’) =

!

G12(RIR’), z<hz, z’>hz

G2Z(RIR’), z>hz, z’>hz

Here

“k 1

(x-x’) 2+(y-y’)2+ (z-z’+ 2ih,~

1
—

&x’)2+(y-y ’)2+(z+z’+2ih2)2 )

_ ~ (_~)J+l~{+l

,=0

“(J

1

(x-x’) 2+(y-y’)2+(z +z’-2(i+l)h2)2

1

&-x’) 2+(y-y ’)2+( z-z’ -2(i+l)h,~ )]

(Al)

1
G12 = ~ (-l)lEZ

‘277( %+~2) ,=0

“(/

1

(x-x’) 2+(y-y’)2+ (z-z’-2ih2)2

1
— 1(A2)

/(x-x’) 2+(y-y’)2+(z +z’+2ih2)2

1

[

1
G22 = —

477’2 J(x-x’)’+(y -y ’) ’+(z- z’)’

E

~(x-’x’)2+ (y-y ’)2+( z+z’-2h2)2

-z (-1) ’EJ(l-E2)

,=() ~(x-x’)2+ (y-y ’)2+( z+z’+2ih2)2 1
(A3)

and

1
G21= f (-~)’~

2~(~l+f2) ,=0

“(l

1

(x-x’) 2+(y-y’)2+ (z-z’+ 2ih, )2

1
—

)

(A4)
~(x-x’) +(y-y’)’+ (z+z’+2ik2)2 “

Note that

Both Gll and G12 vanish at z =0, as expected. It can also

be shown that the tangential electric field and normal

electric displacement are continuous across the dielectric
interface. At z’= h2, we have Glz = Gll and Gzl = Gm.

APPENDIX II

A. The System Matrix K

The system matrix K consists of four submatrices and is

of the form

(A5)

11 kl’ ~21 and k“
where the elements of submatrices k , , ,

are

J
dx’

~:n = a’
J

-“1- :+’dY’G’’(o’ ‘;’h’’x” “’h’)

(A6)

t .

J/&= a’-42%J‘“+ ’dxt~12((),y;, hllx’, y’, h’)
1’ .2

.

(A7)

Jk:: = a’ ‘y’ J-“s :+’dx’G21(2;’0’“’h’)-
(A9)

Here (y., y.+,) is the domain of P.( y) along the length of

strip 1, and (i., f.+ 1) is the domain of P.(x) along the

length of strip 2. Furthermore, y:= ( y., + y~, ~)/2 and

‘+= (.fm + 2m+l)/2. In the expressions above we PerformXm

a straightforward integration of the Green’s function over

the domain of each pulse. The integration along the width

of each strip is performed numerically using the Gauss–
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Chebyshev quadrature. However, caution should be exer-

cised with expressions (A6) and (A9) due to occurring

singularities.

B. The Source Vectors ~~

Introducing (21) into (lOb) we find the source vector ~

whose m th element is

(A1O)

Similarly, we obtain

(All)

The double integrals in (A1O) and (All) are evaluated in

the

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

same manner as those in (A6)–(A9).
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