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The Equivalent Circuit of a Microstrip
Crossover in a Dielectric Substrate
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Abstract — A quasi-static analysis is carried out to examine the capaci-
tive coupling between two nonintersecting orthogonal microstrip lines
above a ground plane and in a dielectric substrate. The charge density
along the width of each strip is described using a prescribéd charge
distribution. A pair of coupled integral equations is derived and solved via
the ‘method of moments. to obtain the excess charge densities. The lnmped
excess capacitances are computed and compared to the ones obtained
using wire lines with radii equal to the equivalent radii of the strips.

I. INTRODUCTION AND STATEMENT OF THE
PROBLEM

ICROSTRIP structures in multilayered dielectric

media have been analyzed extensively using a
quasi-static approach provided that the strips are narrow
compared to the wavelength. While for a homogeneous
structure the dominant mode is TEM, when the structure
is inhomogeneous the dominant mode becomes hybrid.
However, at low frequencies the longitudinal field compo-
nents are much smaller than the transverse components,
justifying the quasi-static approximation.

In this paper we are seeking the equivalent circuit of two
nonintersecting orthogonal narrow conducting strips of
widths 2, and 2a, and of infinite length above and
parallel to a perfectly conducting plane. The top strip lies
on the boundary between two different dielectric media.
This boundary is a plane which is parallel to the perfectly
conducting plane. Figs. 1 and 2 show the geometry of the
structure and the equivalent lumped element circuit. This
inhomogeneous structure, which we will refer to as a
microstrip crossover, is widely used in microwave and

- millimeter-wave integrated circuits and microelectronic
packaging. ,

As in [1] and [2], the present paper uses a Green’s
function for two layers of dielectric above a ground plane
and a quasi-TEM analysis. In [3] the homogeneous
crossover between two ground planes is analyzed using an
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Fig. 2. Equivalent circuit of the microstrip crossover consisting of
lumped excess capacitances.

iterative algorithm, while in [4] the crossover is enclosed
between ground planes and conducting walls, and a trans-
verse resonance analysis is carried out. In [5] a full-wave
analysis is carried out for a semi-infinite crossover. The
Green’s function which is used in our problem is given in
the form of a rapidly convergent infinite series and can be
obtained as a three-dimensional (3-D) extension of the
results given in [6]-[8]. To relate the excess charges to the
stripline potentials a pair of coupled integral equations is
obtained, which are solved via the method of moments
with point matching [9]. The number of unknowns is
reduced significantly by introducing a transverse charge
distribution that satisfies the edge condition [10]. This
distribution introduces integrals that can be evaluated
efficiently using a numerical algorithm called Gauss-
Chebyshev quadrature. '
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II. ANALYSIS

The position-dependent charges per unit area on
striplines 1 and 2 are defined as in [11] by

O1(x, y) =010(x) + q1(x, y) (1)

for line 1 and

0,(x, y) =0y(¥)+ g2(x, ¥) (2)

for line 2. If ¢, is the potential on line 1 then Q,, is the
charge per unit area required to maintain ¢, in the absence
of the other line. Charge density Q,, is defined in a similar
manner for line 2. Because the densities ¢; and ¢, exist in
excess of Q,, and Q,,, they are called excess charge
densities. The potential at a point R in the ¢; medium
above the ground plane is due to the total charge densities
on lines 1 and 2 and is given by

$(R) = g /LQ,(R’)G,j(RlR’)dS’

or, in a symbolic notation,

¢(R):¢(Q19G:1)+¢(Q2’G12)7 (3)
Here, S is the surface of strip j, Q, is the charge density
on it, and G, ,(R|R") with (i, j=1,2) is the electrostatic
3-D Green’s function given in Appendix 1.
From the definition of Q,, and @Q,, we have that

¢1=¢(Q107G11)’ i:172' (4)

Note that when R, R’ € S, then G,, = G,;. Introducing (1),
(2), and (4) into (3) and specializing the resulting equations
to striplines 1 and 2, we obtain the pair of coupled integral
equations

¢(‘h’ Gu) + ¢(427G12) = ¢(Q20’G12)

i=1,2.

(%)
and
$(41,Gy) + ¢(4,,Gy1) = — $(Q1,Gyy)- (6)

We next let

00=00,0 =12 (™)

which when used in (4), (5), and (6) gives
1=¢(Q107G11) (®)
1=¢(Q20,G21) )
$(d11.G )+ ¢(4,,6G1,) =0 (10a)

&(411.Gp1) + 9(451.G) =‘¢(Q10’G21) (10b)
and
¢(@12,G11)+¢(@22,G12)=—¢(Q20,G12) (11a)
¢(d12,Gy1) + ¢(d2y, Gy ) =0, (11b)
The new quantities §,, are related to ¢, and ¢, via
41= $1gn + $adrn (12)
9y = $1Gn + $2Gn,- - (13)

The net excess charges Qf and Qf of lines 1 and 2 are
obtained by integrating ¢, and ¢, over the corresponding

line. These net charges are then related to the line poten-
tials through the coefficients of capacitance and induction
C, and C,, respectively [12]. Then we have

07 =cy9,+ oy

Q5=+ .
Next the lumped excess capacitances are given by

(14)
(15)

(16)
17)
(18)
C, and C, are the excess capacitances of lines 1 and 2
respectively and C,, is their mutual capacitance. The coef-

ficients of capacitance and induction are related to the
excess densities through

ey =" ax[” dyiy,(x.)

—a

Ci=ctop
C=cuntey
C,=—cp.

m

(19)

and

o= & [ dxay(x,y),  j=12. (0)

—a

III. MOMENT SOLUTION

Our objective now is to solve (8) and (9) for Qlo and on
respectively and then to use these quantities in (10a), (10b)
and (11a), (11b). To this end we let the unperturbed
stripline density Q1o( x) be approximated by

Al

Q10(x) =T

2_ .2
a; — x

(21)

where A4, is an unknown constant. To represent on( y) we
replace 4,, a;, and x with 4,, a,, and y respectively in
(21) above. Introducing (21) and (A1) into (8) and per-
forming the integration with respect to y, the integral with
respect to x is evaluated numerically, as shown in [13],
using the Gauss—Chebyshev quadrature [14]. Special care
should be exercised due to singularities of the logarithmic
kernel. We then compute A4, and, in a similar manner, A4,.
We next approximate the excess densities as

1 N
&, =5—= X 41, . P.(») (22)
Y alz-xz n=1 Y
for line 1 and
¥
42 Y ZI\ ’nPn('x)’ ]:1’2 (23)
’ V“%'—yz n=1 2

for line 2. Here, P,(x) is the pulse function defined by

Pn(x)={1’ —L+(n—1)A<x<—L+nA (24)
0, otherwise
where L is an appropriately chosen length and
2L
A= BT (25)

Next we introduce (21), (22), and (23) into (10a), (10b) and
(11a), (11b) and satisfy the resulting equations at the



PAPATHEODOROU et ¢l.: THE EQUIVALENT CIRCUIT OF A MICROSTRIP CROSSOVER

0.104- N - : 0.00 n : . -
0.084 (2) o
y 3,
G 006 L&
-
o or  -020+
q_?z 0.04- L ?.‘LZ_
Co (,"2
0.024 =
0.00 T T T T - T -040+ T T T T 1}—
0Q 1.0 2.0 .30 4.0 5.0 0.0 1.0 2.0 3.0 40 5.0
x/hjor y/hy x/hy ory/h
. (a) (b)
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Fig. 5. Normalized excess charge densities when &) = 0.02h;, a, = 0.044,, €, = 3¢, and €, = €. (1) gy, /C{ versus y/h;; (2)

Gay /C3 versus x/hy; (3) §y /C{ versus x/hy; (4) Gy, /C5 versus y/hy.

137



138

midpoint of the domain of each function along the axis of
each strip. The matrix equations obtained are of the form

2] [ o]
q] - [ by (26)

(k1) 72 - | ).
Vo) 0 |
The form of the system matrix K and the source vectors I

and g are shown in Appendix II. From (22), (23), (19), and
(20) we also obtain

[K]

and

- (@)

N
;= 7A Z ‘?1,'," (28)

n=1

and

N
CZ_/:WA Z ‘bj,n: j=172' (29)

n=1
IV. NuUMERICAL RESULTS

Figs. 3-5 show the plots of the excess charge densities
versus the normalized distance from the center of symme-
try. The quantities that we have plotted are §;(y)/C/,
where

~ ax Py
4(») =_/ g, (x, y) dx
o
for strip 1 and §,,(x)/C/, where

G(x)= [ dulx, y) dy
—a
for strip 2, with i=1, 2. C{ and Cj are the capacitances
per unit length of the isolated wire lines with radii equal to
the equivalent radii of striplines 1 and 2 respectively. C/
and C; are calculated with €, = ¢, =¢,, where ¢, is the
permittivity of free space. As is shown in [15], the equiva-
lent radius of a narrow strip is equal to one fourth its
width. It has been found that the excess charge density is
concentrated within a length of about 204, or 30k,, out-
side of which it is negligible. However, when computing we
assumed a length 104, for each strip. Otherwise stated,
L =5h, in (24) and (25). The height ratio 4, /h, was taken
equal to 1.5 and the length of each subsection 5Xx 10 %4,.
In Fig. 3 the permittivities ¢, and ¢, were chosen to be
equal to €,; and the widths of both strips 4x10~ %k, or
a, = a, = 0.02h,. These plots then were compared to the
ones shown in [11], [16], and [17], where the same parame-
ters were used, and the agreement was excellent. In partic-
ular the plots of Fig. 3 are identical to the ones of [17], as
expected. When the dielectric interface ceases to exist the
infinite series that represents the 3-D Green’s function
reduces to that of free space, which is the case treated in
[17]. In [16] the wire and strip crossovers are examined in
free space. The width of each strip was divided into N’
subsections. To compare the wire and the strip crossover
we assumed a wire with radius equal to the strip’s equiva-
lent radius. Table I shows the values of the normalized
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TABLE 1
COMPARISON OF RESULTS FOR FIG. 3
Results obtained | Results obtained Results Present
using [16] (wire using [16} for a obtained solution
crossover) strip crossover using [17]
with N' pulses
along its width
N'=12 N'=6
C
h% 1.013 1.002 0.991 1.014 1.014
172
cl
e -0.853 -0.844 -0.836 ~0.853 -0.853
171
c’)
n é. -0.792 -0.785 -0.777 -0.792 -0.792
172 .
TABLE II
RESULTS FOR FIGS. 4 AND 5
o =a, = 0.02 h1 Otl =0.02 hl, 9,2 = 0.04 hl
€ = 290, €, =€, 1€ = 3&:0, €, = g
C
m
Tcr 1.672 2.337
172
Cl
ncr -1.345 -1.763
11
C2
hic! -1.296 -2.056
172

lumped excess capacitances using [16]. As expected by
increasing the number of subsections N’, the agreement
between the two solutions becomes excellent, as is the
agreement with the solution presented in [11]. However,
increasing N’ results in an excessive computation time. To
reduce the computation time we then introduced the trans-
verse charge distributions (21)—(23). These distributions
satisfy the edge conditions [10]. The results obtained and
shown in [17] were again in excellent agreement with the
previous ones, as is shown in Table I. Due to a substantial
decrease in the number of unknowns, the computation
time was greatly reduced.

In Fig. 4 we have chosen ¢, =2¢, and €, =¢, The
infinite series that represents the 3-D Green’s function is
fast converging, and ten terms (M =10) gave excellent
accuracy. As a final example Fig. 5 shows the normalized
densities when a; = 0.024,, a, = 0.04k,, ¢, =3¢,, and €, =
¢,- The normalized excess capacitances that correspond to
Figs. 4 and 5 are shown in Table II.

V. CONCLUSION

The capacitive coupling between two nonintersecting
orthogonal microstrip lines inside a dielectric medium
(pg, €;) interfacing an infinite dielectric layer (p,, €,) was
examined. The analysis was carried out using the electro-
static 3-D Green’s function and the method of moments.
An edge condition was assumed to describe the excess
charge distribution along the widths. This approach simpli-
fies the analysis and drastically reduces the computation
time. The results obtained for the limiting case ¢, =¢,
were compared with results obtained using a solution
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where the width distribution was treated as unknown and and
determined by the moment solution. The agreement be-

o0
tween the two approaches was excellent. Gy==——— 2 (-1)'E
2'77(61 + §2) =0
APPENDIX
The electrostatic three-dimensional Green’s function for 1

a two-layer dielectric above a perfectly conducting plane
consists of four expressions depending on the location of
the field and source points. Thus, as is shown in [13],

\/(x—x’)2+(y——y’)2+(z——z’+2ih2)2

1
G, (R|R), z<h2,2’<h - = . (A4)
—x' -y Y +(z+z2'+2i
G(RlR/)_ G12(R|R/)9 ZSh h2 \/(x x)+(y )’) +( z lh2)
Gy (R|R), 2>h2,z’> h, Note that
GZl(RlR’)> Z>h2>2,< h2~ £ €€,
Here e te,

Both G,; and G, vanish at z =0, as expected. It can also

G, —-1V'E' be shown that the tangential electric field and normal
Ty
T | i=0 electric displacement are continuous across the dielectric
interface. At z’= h,, we have G, =G, and G, = G,
. 2 1270y 1= Un.
. ( 5 > = AppeNDIX II
\/(x—x) +(y =)+ (2= 2'+2ih,) A. The System Matrix K
1 The system matrix K consists of four submatrices and is
- of the form
(x = x')+(y— y)V+(z+ 2/ +2ih,)
Y 2 1) 12]
: [K"] [k
H 1 K|= A5
—_ g ( 1) +IE’ +1 [ ] |:[k21] [kzz] ( )
1 where the elements of submatrices k!, k2, k2!, and k??
are
\/(x xV+(y— y)+(z+z—2(l+l)h) -
11 n+
) L f ~ f dy'G11(0, Yo, BylX's ¥, 1)
0 al — X

\/(x—x’)2+(y—y’)z-l‘(z—z’——?.(i+1)h2)2 (A6)

(A1) o & ex

K= | N [ ax G0, i ' ' hy)
— o az -y *n
G —— 1) E’

2= 27 (e +ey) 2 Z (=)’ (A7)

Y41
/ Ay’ Gyy (£,0, holx’, ', y)

1
. k21
(J(x—x')2+(y—y’>2+(z—z'—2ih2>2 I, wxl—x
1

- \/(x — x4 (y— V4 (2 + 2 +2ih,)

(A8)

(A2) and

o ay’ £

1 1 k2 = f \/_2_% f A Gy (R5,0, hylx, y', hy).

- 2 -\ _y Xp
amer | \(x—x) 4 (y - »)+(z-2) 2

E

(A9)

— 2 ; 2 Here (y,, ¥,.,) is the domain of P,(y) along the length of
\/(x— X)H(y—y) H (242 =2hy) strip 1, and (£, %,.,) is the domain of P (x) along the
- (=1)'E{(1- E?) length of strip 2. Furthermore, y, = (¥, t J,,+1)/2 and
£ =(%,,+ %,,.1)/2. In the expressions above we perform

Zo \/( x—x )+ (y— VY4 (z + 2/ +2ih 2)2 a straightforward integration of the Green’s function over
the domain of each pulse. The integration along the width

(A3) of each strip is performed numerically using the Gauss—
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Chebyshev quadrature. However, caution should be exer-
cised with expressions (A6) and (A9) due to occurring
singularities.

B. The Source Vectors I, ¥

Introducing (21) into (10b) we find the source vector I

whose mth element is

« dx’ 0
'/*1 _\/ﬁf &y’ Gy (%,,0, holx’, y', hy).
ayag — x o
(A10)

Similarly, we obtain

« d ’ © .
R w

(A11)

The double integrals in (A10) and (A1l) are evaluated in
the same manner as those in (A6)—(A9).
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